SpiDev Documentation

D= of o)1 [0 o N
SPIINSTAIATION ..ottt sttt st sttt b e b e s bt s ae e et e et e et e e nbeenneesane e
HOW £O rUN PYLON SCIIPES .ciiiiiiiiciiiie et e e st e e e s satae e e esataeeessasbeeesnnseaeesan
T T Y o1 [T USROS
Y1007 0] L3 e 1014 o 10 SR U PRRTPP

[=11 {0 BTl o) £ PSR UR
REVEISE DILS ..ottt ettt e b e st st st et e b e b e sbe e sae e e e e e beenbeesaee e
AT o A o3V =TT

1Y =10 01 o 1] TR TN

Description
This module defines an object type that allows SPI transactions on hosts running the Linux
kernel. The host kernel must have SPI support and SPI device interface support. All of these
can be either built-in to the kernel, or loaded from modules

Because the SPI device interface is opened R/W, users of this module usually must have root
permissions.

This tutorial is written for the use with a Raspberry Pi (Raspbian Wheezy distribution), but it
should match for several others, too.

SPI installation
First things first, it’s always the best to keep your Raspberry Pi up to date, otherwise some
things here may not work. Open a new console and execute the following commands:

sudo apt-get update
sudo apt-get upgrade
sudo reboot

If you don’t have done this yet, grab some coffee or something else because this may take up
to an hour or two.

If you don’t have installed it already you need to install the Python Dev package:
sudo apt-get install python-dev

You need to be sure that SPI is enabled in your system (disabled by default because rarely
used). Open a new terminal and enter:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

This will open a text editor. You should see a line like this in this file:
spi-bcm2708

Put a # before this line to comment it out. Save (Ctrl+0) and exit (Ctrl+X). After a reboot the
device should be found.

sudo reboot
——- after reboot ---
1smod

In the list Ismod outputs you should find the entry “spi_bcm2708” now.

Also you need the SpiDev Python module. Open a new terminal and execute the following
commands:

mkdir python-spi

cd python-spi

wget https://raw.github.com/doceme/py-spidev/master/setup.py

wget https://raw.github.com/doceme/py-spidev/master/spidev_module.c
sudo python setup.py install

Now the SPI device should be available to Python.

How to run python scripts
Of course there are several ways. You can either simple save your script and run it using:

sudo python myscript.py

Or you can mark the file as executable. For this you need to add one line at the top of your
script:

#!/usr/bin/python
Now mark it as executable:
sudo chmod +x myscript.py
Now you can execute it like any other application:

sudo ./myscript.py

Examples

Simple output
This example will open SPI and writes a byte (0xAA) to it each 0.1 second until you cancel it
with Ctrl+C.

import spidev
import time

spi = spidev.SpiDev () # create spi object
spi.open (0, 1) # open spi port 0, device (CS) 1
try:
while True:
resp = spi.xfer2 ([0xAA]) # transfer one byte
time.sleep(0.1) # sleep for 0.1 seconds
#end while
except KeyboardInterrupt: # Ctrl+C pressed, so..
spi.close() # .. close the port before exit
#end try
Helpful scripts

Reverse bits
This script will reverse the bit ordering in one byte (if you are not able to change LSB / MSB
first to your needs.

def ReverseBits (byte) :

byte = ((byte & O0xFO0) >> 4) | ((byte & 0x0F) << 4)
byte = ((byte & 0xCC) >> 2) | ((byte & 0x33) << 2)
byte = ((byte & O0xAA) >> 1) | ((byte & 0x55) << 1)
return byte
#end def
Print bytes

This script will print out a byte array in a human readable format (hexadecimal). This is often
useful during debugging.

def BytesToHex (Bytes) :
return ''.join (["0x%02X " % x for x in Bytes]).strip()
#end def

Member

bits_per_word
Description: Property that gets / sets the bits per word.
Range: 8 .. 16

close
Syntax: close ()
Returns: None
Description: Disconnects the object from the interface.

cshigh
Description: Property that gets / sets if the CS is active high.

loop
Description: Property that gets / sets “loopback configuration”. This is used to test the pcb for
example. Anything that gets received will be echoed back.

Isbfirst
Description: Property that gets / sets if LSB should be transferred first or last.
Remarks: Needs Boolean value. However, this property seems to be read only and the value
dependences on the endianess of the controller / cpu. The Raspberry Pi can only send MSB
first, so you may need to convert the byte(s) manually (see code examples for such a script).

max_speed_hz
Description: Property that gets / sets the maximum bus speed in Hz.

mode
Description: Property that gets / sets the SPI mode as two bit pattern of Clock Polarity and
Phase [CPOL|CPHA]
Range: 0b00=0..0b11=3

open
Syntax: open (bus, device)
Description: Connects the object to the specified SPI device.
open(X,Y) will open /dev/spidev-X.Y

readbytes
Syntax: read (len)
Returns: [values]
Description: Read /en bytes from SPI device.

threewire
Description: Property that gets / sets “SI/SO signals shared” so you have only 1 data line. Read
the data sheets for more details.

writebytes
Syntax: write ([values])
Returns: None
Description: Write bytes to SPI device.

xfer
Syntax: xfer ([values])
Returns: [values]
Description: Perform SPI transaction.
CS will be released and reactivated between blocks. delay specifies delay in usec between
blocks.

xfer2
Syntax: xfer2 ([values])
Returns: [values]
Description: Perform SPI transaction. CS will be held active between blocks.

	Description
	SPI installation
	How to run python scripts
	Examples
	Simple output
	Helpful scripts
	Reverse bits
	Print bytes

	Member
	bits_per_word
	close
	cshigh
	loop
	lsbfirst
	max_speed_hz
	mode
	open
	readbytes
	threewire
	writebytes
	xfer
	xfer2

